
AOD’s Tutorial

Simona Rolli

10/10/05 Simona Rolli - AOD Tutorial
2

Outlook

• ATLAS even data model
 ESD/AOD contents

• Athena framework
• How to access AOD

 Example code
• Highlights from performance groups

10/10/05 Simona Rolli - AOD Tutorial
3

ATLAS even data model

Three major components in addition to RAW data:
ESD - detailed reconstruction output (500kB)
AOD - compressed form meant to be used by most analyses (100kB)
TAG- relational db entries for quick event preselection (1 kB)

10/10/05 Simona Rolli - AOD Tutorial
4

ESD/AOD architecture

10/10/05 Simona Rolli - AOD Tutorial
5

ESD/AOD Architecture

3 cases for reconstruction:

1) Algs which have output too large to fir AOD or can not be run from
ESD → ESD dedicated object + AOD reduced object.

• example: egamma(ESD) and Electron and Photon (AOD)

2) Reconstruction algs can be run on ESD→ the algs are run as part
of the AOD making process

• example: btagging, Staco

3) Reconstruction algs cannot be run on ESD, output doe fit AOD
size → run in the ESD making step. Transitory

10/10/05 Simona Rolli - AOD Tutorial
6

ESD Content

Event Info

PileUp Event Info

Tracking

Muon Spectrometer

Calorimeter

E/gamma

Jet/Missing ET

Trigger

Combined Muons

Simulation

Event ID-run/evt #, time stamp, Evt type, Trigger Info

Event Info from the events used in the pileup

TrackParticle (perigee parms and hit stat)
Trk::Track: list of associated RIO_onTrack
Reco Truth: Reco track ↔True track
Primary Vtx, V0 and hadronic interaction vertices

Cells
CaloCluster
Combined tower with gran 0.1×0.1

One Egamma obj per cluster or track

Jets
Taus
MET
Energy Flow objs

LVL1
LVL2
EventFilterGenerators

PileUpTruth
Other

10/10/05 Simona Rolli - AOD Tutorial
7

AOD Content

Event Info

Tracking

Vertexing

Missing ET

Trigger

Physics Objects

Simulation

Fast Simulation

MonteCarlo Truth

Event ID-run/evt #, time stamp, Evt type, Trigger Info

TrackParticles
InDet, MOORE,MuonBoy,MuID,STACOPrimary and Sec VTX

MET as in ESD LVL2
EventFilter

Photon Candidate
Electron Candidate,hard,soft
Muon Candidate
Tau Jet Candidate
B-Jet Candidate
Particle Jet CandidateStable particles

Selected List of part

10/10/05 Simona Rolli - AOD Tutorial
8

AOD Keys

Event Info = "McEventInfo"
ElectronContainer Name = "ElectronCollection"
PhotonContainer Name = "PhotonCollection"
MuonContainer Name = "MuonCollection"
TauJetContainer Name = "TauJetCollection"
JetTagContainer Name = "BJetCollection" (since 10.0.0)
ParticleJetContainer Name = "ParticleJetContainer"
(up to 9.4.0/9.0.4)
ParticleJetContainers (since 10.0.0) = "KtTowerParticleJets",
 "Cone4TowerParticleJets", "ConeTowerParticleJets"

Missing Et objet Name = "MET_Base"
Missing Et calibrated objet Name = "MET_Calib"
Missing Et Truth objet Name = "MET_Truth"
Missing Et Muon objet Name = "MET_Muon"
Missing Et Final objet Name = "MET_Final"
Missing Et Cryostat correction = "MET_Cryo" (since 10.0.0)
Missing Et Topological Clusters = "MET_Topo" (since 10.0.1)
TruthParticleContainer Name = "SpclMC" (filled on the fly)

10/10/05 Simona Rolli - AOD Tutorial
9

AOD Keys (II)

Inner Detector TrackParticles ="TrackParticleCandidate"
Inner Detector TrackParticles = "TrackParticleCandidateXK"
Muonboy TrackParticles = "MuonboyTrackParticles"
STACO TrackParticles = "StacoTrackParticles"
MOORE TrackParticles = "MooreTrackParticles"
MuID StandAlone (SA) TrackParticles = "MuidStandAloneTrackParticles"
MuID Combined TrackParticles = "MuidCombnoSeedTrackParticles"
Muid SA TrackParticles low Pt = "MuidStandAloneTrackParticlesLowPt"
Muid MOORE TrackParticles low Pt = "MuidMooreTrackParticlesLowPt"
Muid Combined TrackParticles low Pt = "MuidMooreTrackParticlesLowPt"
Muid iPatTrackParticles = "MuidiPatTrackParticles"
Muid iPatTrackParticles low Pt = "MuidiPatTrackParticlesLowPt"
Slimmed McEventCollection = "GEN_AOD"
TrackParticleTruthCollection = "TrackParticleTruthCollection"
CTP Decision = "CTP_Decision"
LVL1 RoI = "LVL1_ROI"
Vertex Container = "VxPrimaryCandidate"
Track Record Collection = "MuonEntryRecordFilter"
Truth ParticleJetContainers (since 10.0.0) = "KtTruthParticleJets",
"Cone4TruthParticleJets", "ConeTruthJets”

10/10/05 Simona Rolli - AOD Tutorial
10

A reminder about ATHENA

•The architecture of the Athena framework allows for:
 Separation of data from algorithms
 Separation of transient (in-memory) from persistent (in-file)

data
 Extensive use of abstract interfaces to decouple the various

components

• Backbone of the ATLAS
computing system

• Quite extensively used
• Field tested (CTB)
• It scales, it works…

10/10/05 Simona Rolli - AOD Tutorial
11

Separation of data and algs

 Tracking code:

 Calorimetry code:

10/10/05 Simona Rolli - AOD Tutorial
12

Example Code

There is an excellent tutorial on how to setup an analysis code
to run on AOD/ESD by Ketevi Assamagan:
http://www.usatlas.bnl.gov/PAT/analysis_on_aod.html#Ana_AOD

I have followed his example in setting up the user code you might
have found in the twiki page, to read AOD/ESD and produce a simple
ntuple.

What follows is taken from Ketevi’s tutorial, almost verbatim

10/10/05 Simona Rolli - AOD Tutorial
13

Code Example: UserAnalysis

The CVS Package UserAnalysis

This is the proposed package where the user will develop his/her analysis code,
UserAnalysis.

After setting up CMT, check this package out of the CVS repository into your
working directory:

cmt co PhysicsAnalysis/AnalysisCommon/UserAnalysis
or

cmt co -r UserAnalysis-ab-cd-xy PhysicsAnalysis/AnalysisCommon/UserAnalysis
where ab-cd-xy is a specific package tag number such as 00-01-09.

This package provides a default requirements file to build the user analysis code
and an analysis skeleton algorithm class called AnalysisSkeleton.

All the user has to do is to rename this class to his/her liking and start developing
the analysis code.

10/10/05 Simona Rolli - AOD Tutorial
14

Code Example: compiling, linking and
running

You can compile and link the analysis skeleton algorithm and run it:
To do this, as follows:
build the AnalysisSkeleton algorithm with the following commands from the "cmt"
directory of UserAnalysis
cmt config
source setup.(c)sh
cmt broadcast gmake

go to the "run" directory of UserAnalysis and do this
get_files AnalysisSkeleton_jobOptions.py

athena.py AnalysisSkeleton_jobOptions.py

Although the above command is correct, it will most likely not run because
the input AOD file and the corresponding PoolFileCatalog.xml are not defined.

10/10/05 Simona Rolli - AOD Tutorial
15

Code Example: input file

One would then need to do the following:

edit this job options for the AOD input file name and location

Make sure PoolFileCatalog.xml exists and contains the AOD input file,

Then
athena.py AnalysisSkeleton_jobOptions.py

This should run the AnalysisSkeleton algorithm producing some ROOT histograms
in a file named: AnalysisSkeleton.root

10/10/05 Simona Rolli - AOD Tutorial
16

Code Example: our example

On the twiki page you’ll find the instructions to run AnalysisSkeleton
renamed DoubleChargedHiggsOnAOD
The name is from the code Kamal Benslama gave me and I have
been to lazy to rename it!

So, what does the code do? What information is accessed from
 AOD (ESD) ?

10/10/05 Simona Rolli - AOD Tutorial
17

Back on AOD objects

You need to know the "name" (or the StoreGate key) of the AOD container that you
want to access in your analysis code.
What we mean by name here is the std::string code that was used to create the AOD
container. You need to know that so you can ask for that container if you need it.

std::string m_electronContainerName = "ElectronCollection";
... const ElectronContainer* elecTES;
sc=m_storeGate->retrieve(elecTES, m_electronContainerName);
if(sc.isFailure() || !elecTES) {
mLog << MSG::WARNING
<< "No AOD electron container found in TDS"
<< endreq; return StatusCode::SUCCESS; }
else{
mLog << MSG::DEBUG << "ElectronContainer successfully retrieved"
<< endreq; }

In the above snippet of code, the data member m_electronContainerName defines
the name of the ElectronContainer that you want to retrieve. If you look in the constructor of
AnalysisSkeleton.cxx, you will see that m_electronContainerName is initialized to
"ElectronCollection".
That is the name used when the AOD electron container was produced

10/10/05 Simona Rolli - AOD Tutorial
18

AOD interfaces

Note that from the link to the container class, you can acccess the class of
the contained object.
For example, from the link to ElectronContainer.h,
you can access Electron.h which is the electron AOD class.

The common implementation for some of the AOD classes is provided in
 the ParticleBase.h class (charge, Id, PartType).
The navigation features are implemented in Navigable.h (technical)
and the four momentum interface is given by 4Mometum (package with
several classes to handle different requirements)

Common way to access information!

The common tools, to handle AOD objects in your analysis, are built on the
 ParticleBase.h and the ParticleBaseContainer.h interface.
(http://www.usatlas.bnl.gov/PAT/analysis_on_aod.html#Tools_AOD)

10/10/05 Simona Rolli - AOD Tutorial
19

Accessing objects inside a container

Loop over the objects in the Container: after you successfully retrieve the container
and have a pointer to it in the transient data store (TDS),
you can get the iterators over the container since the container is a DataVector.
Look at the example in the execute() method of AnalysisSkeleton.cxx:

... /// iterators over the container
ElectronContainer::const_iterator elecItr = elecTES->begin();
ElectronContainer::const_iterator elecItrE = elecTES->end();
 for (; elecItr != elecItrE; ++elecItr) {
 if((*elecItr)->hasTrack() &&
 (*elecItr)->pt()> m_etElecCut) {
 m_h_elecpt->fill((*elecItr)->pt(), 1.);
 m_h_eleceta->fill((*elecItr)->eta(), 1.);
...

In the above snippet of code, (*elecItr) is a pointer to an Electron.h within the container
ElectronContainer.h

10/10/05 Simona Rolli - AOD Tutorial
20

Access to kinematics

Some of the AOD objects are 4Momentum objects,
meaning that they should be able to answer all your questions about their kinematics.
For example, to ask the Electron object for its transverse momentum and
pseudo rapidity:

for (; elecItr != elecItrE; ++elecItr) {
if((*elecItr)->hasTrack() && (*elecItr)->pt()> m_etElecCut)
{ double electronPt = (*elecItr)->pt();
 double electronEta = (*elecItr)->eta();
...

10/10/05 Simona Rolli - AOD Tutorial
21

Kinematics information

The complete list is the following:
double px()
double py()
double pz()
double m()
double p()
double eta()
double phi()
double e()
double et()
double pt()
double iPt()
double cosTh()
double sinTh()
double cotTh()
HepLorentzVector hlv()

10/10/05 Simona Rolli - AOD Tutorial
22

Performances groups

In ATLAS there are 4 groups working in definition and testing the
Performances of the physics objects:
1. e/gamma
2. Jet/Tau/MET
3. b-tagging
4. Muons

Here we report on recent highlights from last week overview in Paris

10/10/05 Simona Rolli - AOD Tutorial
23

e/gamma reconstruction

The reconstruction sequence for electrons and photons:
• Calibration of Electronics and Alignment
• Clustering either Topological or Sliding Window
 SW used in the following
• Corrections at the cluster level:

• position corrections
• correction of local response variations
• corrections for losses in upstream
(Inner detector) material and longitudinal leakage

• Matching with Tracks
• Identification
• 2nd stage reco:

• Refinement of corrections depending on the particle type (e/γ)
planned
• Bremfit/Gaussian Sum Filter planned

• uniformity 0.7% with a local uniformity
 in ηXφ=0.2x0.4 better than 0.5%
• inter-calibrate region with Zee
• AOD: electrons are merged from 2 algorithms, photons are track-less
 (as orthogonal as currently possible)

10/10/05 Simona Rolli - AOD Tutorial
24

e/gamma: ID cuts

There are 3 types of quality cuts you can perform on the electron candidates:
1.Cuts based on the isEM flag

2.Cuts based on likelihood
3.Cuts based on NeuralNet output

1. The isEM flag uses both calorimeter and tracking information in addition to TRT
information. The flag is a bit field which marks whether the candidate passed or not
some safety checks. The bit field marks the following checks:
Cluster based egamma
ClusterEtaRange = 0,
ClusterHadronicLeakage = 1,
ClusterMiddleSampling = 2,
ClusterFirstSampling = 3,
Track based egamma
TrackEtaRange = 8,
TrackHitsA0 = 9,
TrackMatchAndEoP = 10,
TrackTRT = 11

In 9.0.4 there is a problem with TRT simulation so
one has to mask TRT bit to recover the lost efficiency.
To get the flag in your AOD analysis you should use:
(*elec)->isEM()
To mask the TRT bits you should use:
(*elec)->isEM()&0x7FF==0
If you use isEM then you will select electrons
with an overall efficiency of about 80% in the barrel
 but much lower in the crack and endcap.

10/10/05 Simona Rolli - AOD Tutorial
25

e/gamma: likelihood

The likelihood ratio is constructed using the following variables:
energy in different calorimeter samplings, shower shapes in both eta and phi
and E/P ration. No TRT information is used here.
You need to access two variables called emweight and pionweight
then you can construct the likelihood ratio, defined by:
emweight/(emweight+pionweight).

In AOD, you use the following code:
ElecEMWeight =
elec*->parameter(ElectronParameters::emWeight);
ElecPiWeight =
elec*->parameter(ElectronParameters::pionWeight);
Then form the variable:
X = ElecEMWeight/(ElecEMWeight+ElecPiWeight);
Requiring X > 0.6 will give you more than 90% efficiency for electrons.

10/10/05 Simona Rolli - AOD Tutorial
26

e/gamma: neural net

The NeuralNet variable uses as inputs the same variables used for likelihood.

To use it in AOD you should proceed as follow:
ElecepiNN = elec*->parameter(ElectronParameters::epiNN);

Requiring ElecepiNN > 0.6 will give you about 90% eff for electrons.

However, you should be aware that the NN was trained in full eta range while
the likelihood was computed in 3 bins in eta: barrel, crack and endcap.
So I would suggest to use likelihood for now.To require an isolated electron,
you have to cut on the energy deposited in the cone around the electron
cluster. ATLFAST for example requires Et<10 GeV in a cone of dR=0.2.
You can simulate the ATLFAST cut by requiring etcone20<10.*GeV

10/10/05 Simona Rolli - AOD Tutorial
27

Jets

 The jet reconstruction algorithms implemented in ATHENA are:
seeded and seed-less cone and kT algorithms.

These algorithms can act on calorimeter towers (ΔϕxΔη regions),
MC particles or TopoClusters (energy blobs).

Jet reconstruction SW allows to easily change from one input to
another using exacly the same reconstruction algorithm.

Mostly seeded cone algorithm - fast, easy to understand
however it does not satsify theory requirements (infrared and
collinear safety).

Systematic work to understand detailed efficiencies, jet shapes
and peculiarities of various algorithms is starting now.

10/10/05 Simona Rolli - AOD Tutorial
28

ETmiss reconstruction and calibration

MET requires complete reconstruction and calibration
of the event.
 MET = MET_Calib + MET_Muon + MET_ Cryo

All Calorimeter
cells |η|<5

calibrated with H1

|Ecell | > 2σ

All MOORE (to
avoid energy

double counting)
muons

|η| < 2.5

Estimated energy
loss in cryostat

between LAr and
Tile

All Calorimeter
cells belonging to
topoclusters 4-2-0

calibrated with H1

OR

Best variable: MET_Final
or a vector sum of
(MET_Topo+MET_Cryo+MET_Muon)

10/10/05 Simona Rolli - AOD Tutorial
29

A closer look at ETmiss: tails

•In SUSY working group, started to look at ETmiss tails .
QCD events with a large reconstructed ETmiss are a very dangerous background
for SUSY.
In QCD with 560<pT<1120 (J6) found few hundred events with very large MET
 found two causes for these … maybe three:

1. There are cells in LArg strips with very large negative energy giving a large
NEGATIVE (unphysical!) SumEt. This is a known problem in some Rome events
(only in some samples and <3%) in the simulation/digitisation phase. Still to be
completely understood.
2. Events with very large pt fake muons (up to % in very high pT jet samples) .
Problem is being fixed trying to use better muon reconstruction. Match of muon
reconstructed in the spectrometer alone to the ID muon with cleaning cuts.
3. Also few LArg cells with very large positive energy: problem under
investigation

4.Deep investigation is continuing….

10/10/05 Simona Rolli - AOD Tutorial
30

Muons

Muon identification basics:
I Muon system as tracker (available)
• standalone Muon system
 Moore and Muonboy
• combination of muon and ID track (calorimeter)
 MuId and STACO
II Muon system as tagger (under development)
• starting point is ID track
• muon identification by extrapolation and matching to

muon segments
 Low pt algorithm: hits
 MuTag: segments

Need less info: not a
Track, just a segment
Less sensitive to alignement

10/10/05 Simona Rolli - AOD Tutorial
31

Muon access

The muons have highPt and lowPt algorithms.
The overlap is removed, but you may want to only use the highPt ones.

The chi2() method is always 0 in 10.0.1, so you will have to access
the CombinedMuon through something like

const Rec::TrackParticle* cbndMuon =
part->get_CombinedMuonTrackParticle();
 if(cbndMuon) {
double chi2 = cbndMuon->fitQuality()->chiSquared();
 int ndof = cbndMuon->fitQuality()->numberDoF();
 if(ndof > 0) chi2 = chi2/ndof;
 return chi2; }

10/10/05 Simona Rolli - AOD Tutorial
32

b-Tagging

• Historical » taggers:
 IP2D: transverse impact parameter
 IP3D: 2D+longitudinal
 SV1, SV2: inclusive secondary vertex SV1+IP3D (called SV1 in CBNT)

• New taggers:
 Lifetime2D: transverse impact parameter
 lhSig: secondary vertex + impact parameter (2D&3D)

• Tagging weight:
 IP2D: based on impact parameter significances S=d0/σ(d0)
 Track weight: likelihood ratio wt=Pb(S)/Pu(S)
 Jet weight: Wj= Σln wt

i

• Generalization of the weight for other taggers, can be combined
by summing them up.

10/10/05 Simona Rolli - AOD Tutorial
33

b-Tagging

•Weights accessed from AOD:
M_bjetwSV1[j] = (*newBJets)[j]->weightForTag("SV1");
m_bjetwIP2D[j] = (*newBJets)[j]->weightForTag("IP2D");
m_bjetwIP3D[j] = (*newBJets)[j]->weightForTag("IP3D");
M_LHSig[j] = (*newBJets)[j]->Lhsig();

 All taggers are kept for performance studies and cross-checks
⇒ low performance taggers (Lifetime2D/IP2D) are usually rather robust

(easier to understand and commission)
⇒ high performance ones (SV1/SV2) will require more time to control
 ⇒ taggers identical wrt discriminating variables

 (Lifetime2D ~ IP2D, Lifetime3D ~ IP3D)
 are kept for cross-checks and do differ in some point
 (refined track selection in IPxD,
 one 2D vs one 1D pdf for IP3D vs Lifetime3D, …)

10/10/05 Simona Rolli - AOD Tutorial
34

b-Tagging

 “1st stream” taggers : (*JetTag)→weight()
corresponding to SV1+IP3D

 “2nd stream” taggers : (*JetTag)→weightForTag(“lhSig”)
corresponding to Lifetime1D+Lifetime2D(+SecVtxBU)

The most powerful tagger

For physics analysis a combination is given:

LHSig distribution:
IP2D > 3.0 (red)
IP2D < 1.0 (black)

10/10/05 Simona Rolli - AOD Tutorial
35

Conclusions

Analysis Objects Data are quite well defined to start using them
There are several very well documented pages on how to access them
and produce ntuple:

• Ketevi’s tutorial
• NikHEF page

Following the examples should not be too difficult
Don’t be afraid to ask

